If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+9X-250=0
a = 1; b = 9; c = -250;
Δ = b2-4ac
Δ = 92-4·1·(-250)
Δ = 1081
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{1081}}{2*1}=\frac{-9-\sqrt{1081}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{1081}}{2*1}=\frac{-9+\sqrt{1081}}{2} $
| 2(2e-2)=4e+17 | | 2x-4-3=72 | | 3(1/6x+9)=1/2x-27 | | y-1.564=1.256 | | 9x+15=63 | | 40=10+x/3 | | 97/5x=2 | | 12u+20=9u+15 | | 14y-4=12+8 | | 11=-3d | | a=2+1/4 | | 11=4a+2 | | 4x(x+3)=x+42 | | (7x+80)+3x+68)=180 | | 2q-1/4=3q+5/6 | | 1/8x-3=7 | | 3(2x+7)=11x+12-5x+9 | | 5x18+6x=108 | | (X+18)+4x+x=180 | | (X+15)3x+x=180 | | 2(-3x-12)=10x+120 | | -2(5x-2)=12x+136 | | 4(11-2x)=11x+63 | | 68+8x+3+5x-8=180 | | 5x+24=4x+26 | | 11x+13=8x+10 | | 3(4x+8)=9x+18 | | 4(2x+7)=9x+22 | | 4x+9=9x+22 | | 6x-4+5x+3=180 | | x^2-17x=-66 | | 12x+13+83=180 |